
Noodle_Rush Final Project

Kongphop Kayoonvichien 6680081

Panisa Laohom 6680091

Printitta Tangpongsirikul 6680152

Theresa Rujipatanakul 6680211

Wipavee Buttayothee 6680655

Mahidol University International College

ECGI 211 Advanced Computer Programming

Asst. Prof. Dr. Mingmana Sivaraksa

12 July 2024



Background

Abstract: Noodle Rush is a game based on Zero Hunger and Responsible Consumption and

Production, SDG 2 and 12 respectively. A player will run a noodle shop every day for 7 days,

creating custom bowls based on customer orders. Earn revenue from sales, factoring in costs for

any incorrect ingredients, then calculate and provide accurate change to the customer.

Eventually, after a week of collecting revenue, the player will contribute to charity to provide

food for people in need. Noodle Rush have an educational goal

Related SDGs:

- SDG 2: Zero Hunger

- Support this goal by using revenue to help combat hunger by providing food for

underprivileged people.

- SDG 12: Responsible Consumption and Production

- Ensure no food waste by deducting the money score when choosing the wrong

ingredients.



Game idea

1. Firstly, the player has to input a name that contains at least one alphabet and does not

already exist. Then, they choose whether they want to skip the tutorial or not.

2. A customer’s order will be displayed for a limited time, which varies each day, for the

player to memorize.

a. The order is randomly customized by the program.

3. The player must choose ingredients according to the order. If a player answers

incorrectly, the money will be deducted by 5 for every mistake they make.

4. After cooking is done, the player must calculate a change to the customer.

a. The program determines the customer’s payment by adding a number randomized

from 1 to 100 to the order’s price.

b. If the input change is less than the actual change, the final income will be

deducted by half.

c. If the input change is larger than the actual change, the player will lose money

according to the calculation.

d. If the input is correct, the customer will tip 30% of the price.

5. Steps 2-4 repeat until the queue on that day is empty.

6. At the end of each day, the program will save data to filename.txt



a. The player can stop playing on any day and the scoreboard will show the amount

of days the player has played and the total income they have gained.

7. The game continues for 7 days, and the number of orders will increase while the time will

decrease as the day passes by.



Code Explanation

Github repository: https://github.com/Java12361/Noodle_Rush/tree/main

Main.cpp

1. Random different seeds every time by srand(static_cast<unsigned int>(time(0)));

from include <ctime>.

2. Declare classes, including LinkedList, queue, and order classes. Declare variables.

3. The player needs to enter a unique name with at least one character. If the criteria are not

met, the player will be prompted to enter a name until it does.

4. Skip the tutorial option by using the function doYesNo() from "game.h" and call tutorial()

https://github.com/Java12361/Noodle_Rush/tree/main


from "tutorial.h".

5. The game will play for 7 days, so we use a while loop while(day<=7).

6. We random a, b, c, and d, which indicate the ingredients, with different seeds every time

making the output (order) different. This will be used to randomly customize orders in

the next step.

7. Orders are constructed using a constructor in “order.h” with randomized ingredients from

the previous step and put into the function enqueue() from "queue.h" inside the for loop

to create a waiting line. Number of orders increases each day.

8. Call function do_order() from "queue.h" to let the player make orders to serve, do the

cashier, and dequeue an order once it is finished.

9. Before the end of the day (before the code in while loop repeats) we call function

increaseday() and increasemoney() from "increase_file.h" to write data on filename.txt.

10. Before writing the data in, we sort players by money on “filename.txt” using

sort_by_money() from "linkedlist_person.h". Then, update the file by write_list_to_file()

function from "file.h".

11. Call function endGame() to display player results after 7 days.

12. Lastly, call function print_current_player() and print_scoreboard() from "file.h" to display

the leaderboard



game.h

void timer(int sec): Use a for loop to count down the inserted time in seconds and display the

progress.



person.h

Constructors:

● person(string, int, double): Initializes a person with a name, day, and money.

● person(const person& other): Copy constructor to initialize a person from another person

object.

Getter Methods:

● string get_name() const: Returns the person's name.

● int get_day() const: Returns the person's day.

● double get_money() const: Returns the person's money.

Setter Methods:

● void set_day(int new_day): Sets a new value for the day.

● void set_money(double new_money): Sets a new value for the money.



node_person.h

Sets up node with player data to be used in linkedlist_person.h, representing a player in the list



linkedlist_person.h

The linkedlist_person.h file supports file.h by managing the list of players. It includes functions

to add new players, check for existing players, update player progress, and load data from a file.

append function use for adding a new player to the end of list and creates a new node and sets its

position as the new tail. This function will be called using in create_and_person in file.h.



exists function checks if a given name already exists in the list. If the entered name is the same as

one in the list, it will return true. If the name is unique (not the same as any in the list), it will

return false. It will scan through the list using a while loop until it finds nothing left. This

function will be called using in uniquename in file.h.

increment_day function function increases the day count for a specified player in the list. It uses

a while loop to check each player's name until it finds the correct name and increments their day

count. This function will be called using in increaseday in file.h.



increment_money function updates the money count for a specified player in the list. It uses a

while loop to check each player's name until it finds the correct name and replaces their money

count. This function will be called in order to increase money in file.h.

sort_by_money function sorts the list of players in descending order based on their money. It

uses the selection sort algorithm to set the order. This function will be called using in main.cpp.



file.h

The file.h file contains functions for file operations, ensuring that player data is correctly saved

and loaded. It checks for the existence of the data file, adds new players, and writes the updated

list of players to the file. It requires #include <fstream> for using file-related operations and

functions.



Check_and_write_person function uses the stat function, which requires #include <sys/stat.h>,

and sets a variable named buffer to check the existence of a file. If stat does not return 0, it

indicates that there is no file named "filename.txt". The function then uses this information to

create the file and write the header if the file does not exist. Afterward, it uses a function called

Checkfile to check and open the file. Checkfile function reads all players' information from

filename.txt, skips the header line, and converts the data into a list for checking names against

the entered name.



Check_and_write_person function (continue) enters a loop to prompt the user for a name,

ensuring it is unique and contains at least one letter. The name is then converted to uppercase and

added to the list. The function uses ofstream Myfile("filename.txt", ios::app) to append the

player's information to filename.txt.

write_list_to_file function is used to save and write the list of players including all players

information (name, day, money) to a file.



order.h

order class contains variables and functions that are necessary to create and serve a bowl of

noodles



Order constructor is used for setting the ingredients and price in each order as randomized in

main.cpp, also combining every ingredient name together to be a whole menu name.



This kind of function is used for making the player select the right ingredient in each order as it

is set in an order constructor. There are 4 similar functions including: select_noodle, select_meat,

select_soup and select_veg.

Make function: Print the customer’s order for a specific time which will be different for each day

of selling using timer(int) function in game.h. Call all the select_(ingredient) functions to let the

player make a bowl of noodles and call the cashier function (explained on the next page).



cashier function: Initialize Payment and Correct Change by generating a random payment

amount that is larger than the menu price. Then the player will input the change they would give

back. Check Player's Change: If the player's change is correct add a 30% tip to the final change.

If the player's change is less than the correct amount Apply a 50% discount on the price. If the

player's change is more than the correct amount, calculate the extra money given back to the

customer. Lastly updates the total cash based on whether it's a tutorial mode (x != 0) or an actual

transaction (x == 0).



node.h

Sets up a node containing ‘order’ called bowl to be used in queue.h. The bowl represents a

customer’s order waiting to be made.

make_bowl function is simply used to access member function make() in the class order. This

will be called in do_order() in queue.h.



queue.h

The queue.h file supports the main game by creating a waiting line of orders as a queue. It

includes functions to add new orders, make orders, and delete finished orders.



This follows FIFO or first-in-first-out principle. Enqueue function is used to add new order to the

queue at the tail and increase the size of the queue. Dequeue function is used to delete the

finished order (at the head) from the queue.



do_order function is used to make all the orders in a day. In a for loop, it calls the function

make_bowl() which is declared in the node to make a bowl of noodles and do the cashier, then it

calls the dequeue function. The for loop will loop until it matches the size of the queue that is

until the queue is empty.



Work Distribution

Name Code

Kongphop (Java) : 6680081 Sub-game functions & Debug game.h

Panisa (Pla) : 6680091 Save game functions file.h, linkedlist_person.h,

node_person.h
Printitta (Mind) : 6680152

Theresa (Tea-Tree) : 6680211 Main game functions order.h, node.h, queue.h

Wipavee (Pang) : 6680655



Requirements

1. Using 6 classes as these following files:

1.1. person.h

1.2. node_person.h

1.3. linkedlist_person.h

1.4. order.h

1.5. node.h

1.6. queue.h

2. Sorted algorithm is implemented in the sort_by_money function of linkedlist_person.h

file, using selection sort.

3. Integrating person.h in linkedlist_person.h and order.h.in queue.



Limitation

Even after all the hardship that we put into this project, there are still some limitations, including:

● Our game is a play-through game, which means the player cannot choose to exit the game

midway.

● Even though our program saves data, including the player's name and number of days

they have played, it is not possible to resume the game from where the player left off.



Presentation Link

https://www.canva.com/design/DAGJbXYBeuI/xtzVNC6lzKUf9LhRkwr

RKg/view?utm_content=DAGJbXYBeuI&utm_campaign=designshare&u

tm_medium=link&utm_source=editor

https://www.canva.com/design/DAGJbXYBeuI/xtzVNC6lzKUf9LhRkwrRKg/view?utm_content=DAGJbXYBeuI&utm_campaign=designshare&utm_medium=link&utm_source=editor
https://www.canva.com/design/DAGJbXYBeuI/xtzVNC6lzKUf9LhRkwrRKg/view?utm_content=DAGJbXYBeuI&utm_campaign=designshare&utm_medium=link&utm_source=editor
https://www.canva.com/design/DAGJbXYBeuI/xtzVNC6lzKUf9LhRkwrRKg/view?utm_content=DAGJbXYBeuI&utm_campaign=designshare&utm_medium=link&utm_source=editor

